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Anchoring transition and influence of director fluctuations in liquid crystal droplets
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aSchool of Physics, University of Hyderabad, Hyderabad, India; bDepartment of Physics, Osmania University, Hyderabad, India

(Received 1 April 2009; accepted 28 July 2009)

Micro-droplets of nematic liquid crystals have been investigated under radial boundary conditions, based on a
lattice model which incorporates explicitly the elastic properties of the medium as variable parameters in the
Hamiltonian. Equilibrium director configurations have been simulated, employing the Monte Carlo technique, as a
function of anchoring strength eS at the spherical boundary surface. A very sharp transition from a uniaxial
nematic structure to a radially ordered state results in eS being increased beyond a threshold. The flexibility offered
by this Hamiltonian is utilised to investigate this structural transition as a function of the splay elastic coefficient
K1. The results indicate several features: (1) the transition is as expected influenced by K1; (2) the transition seems to
be mediated by a process of complete wetting by the outer spherical surface, except for the small uniaxial core
region sustained by the elastic energy penalty otherwise incurred; (3) the degree of splay contribution has multiple
effects on the transition including changes in the critical anchoring strength at the transition, and the nature of the
transition itself; (4) profiles of the director fluctuations across the (concentric) spherical layers indicate evidence of
frustration caused by the competing interactions generated in the system due to the boundary conditions imposed.

Keywords: polymer dispersed liquid crystal droplet; Monte Carlo simulations; elastic potential

1. Introduction

Polymer dispersed liquid crystals (PDLCs) are a class

of materials that are very important from the point of

view of applications (1–3). The electro-optic proper-

ties, for example, have been studied extensively as a

function of external parameters such as the applied

voltage (3–5). Holographic PDLCs are a subgroup of

these materials, and are equally important for display

devices (6, 7). Molecular organisations in these mate-
rials due to the different host materials have attracted

the attention of physicists (8).

Experimental techniques such as 2H nuclear mag-

netic resonance (NMR) and polarisation methods are

used to study these materials. The effect of molecule

size (9) and anchoring due to the substrates (10) have

been studied using NMR techniques. The NMR spec-

tra have been interpreted by simulation using Monte
Carlo (MC) methods (11) and also by different phe-

nomenological models (12). These systems have been

investigated using mean field methods (13–15), and

analysed based on Landau theory (16).

In particular, these droplets of micrometre size, or

less, have been investigated (16) under different

anchoring conditions imposed by the bounding poly-

mer matrix. The motivation for these studies origi-
nated both from basic issues involved in determining

the equilibrium structures in such soft model systems

under confinement, as well as from their applications

as optical modulators (17, 18). Of specific interest is a

droplet subjected to radially ordering conditions at

the polymer–substrate interface (19). Markov chain

MC studies based on the Lebwohl–Lasher (LL)
model (20) show that the droplet, in its nematic

phase and under strong anchoring conditions, is

essentially radially ordered but for a small spherical

region at the core, which has uniaxial nematic phase

(21). The origin of this core region is attributed to the

delicate balance between the energy penalty imposed

by the radial ordering (at that curvature) and the

energy expenditure involved in maintaining an inter-
facial spherical region (between the inner uniaxial

ordering and outer radial ordering (11)). Obviously,

this is dictated, on the one hand, by the degree of

relevant elastic distortion sustainable (in this case the

splay distortions) vis-á-vis the influence of the inter-

molecular interactions to bring about uniaxial order-

ing, on the other. Earlier simulations (22) based on

the LL model have clearly shown that the size of this
inner uniaxial core is independent of the actual size of

the droplet (assuming that it is always bigger than the

core region) (23), and it is essentially determined by

the nature of the Hamiltonian chosen. To make this

scenario quantitative, the concept of the radial order

parameter SR was introduced to specify the degree of

alignment of the liquid crystal region along the radial

direction of the droplet, along with S which denotes
the uniaxial ordering of the nematic phase (22). These

simulations focused on the temperature dependence
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of the formation of the radial order, and its propaga-

tion to the inner layers, as the nematic phase is

formed. Further studies were carried out on these

droplets to understand the effects of applied external

field (21) at various anchoring strengths at the poly-

mer interface. Different molecular organisations

were investigated by illustrating their influence on
the simulated NMR spectra. Droplets with toroidal

and bipolar boundary conditions were also studied

using MC simulations for different anchoring

strengths and at different external fields (19, 24–26).

More recently, a droplet of biaxial molecules was

investigated using MC simulations based on a suita-

ble lattice Hamiltonian (27) for the different kinds of

defects formed in such systems (28).
One of the interesting questions that arises in this

connection concerns the role of the anchoring

strength of the bounding surface in inducing radial

order (at a given temperature in the nematic phase),

and the nature of the transition from a wholly uni-

axial structure (when the bounding surface is com-

pletely ineffective in influencing the liquid crystal

inside) to an essentially radial structure, as was
observed in the earlier work under strong anchoring

conditions. The other important considerations

include the role of the relevant elastic property

(splay energy represented by the corresponding coef-

ficient K1) in determining the nature of this transi-

tion, the size of the inner uniaxial core that emerges,

and also the extent of competition that it may pro-

vide at the interfacial region, betrayed by the fluc-
tuations in the order parameters quantifying the

equilibrium structure of the medium. In other

words, use of a suitable Hamiltonian which can

incorporate the elastic properties of the medium

while accounting for the nematic order of the liquid

crystal would be very appropriate in the study of this

problem. One of the questions addressed is whether

the influence of the anchoring by the surface, and
consequent induced radial order, could be viewed as

due to a wetting phenomenon.

In this context, it may be noted that a lattice-based

Hamiltonian which explicitly takes into account the

elastic properties of the medium via the three elastic

coefficients (splay (K1), twist (K2) and bend (K3) elastic

constants) is used for this study. This interaction is

computed for nearest-neighbour lattice elements. Its
application to the Schadt–Helfrich cell has been

demonstrated through detailed MC simulations (29).

In this work, we shall adopt this model to study the

equilibrium director configurations of a PDLC dro-

plet in its nematic phase under radial boundary con-

ditions, with specific focus on the anchoring transition

induced by variable coupling to the polymer matrix,

and the role of splay distortion.

2. Model used

The director configuration of a system with given

geometry and boundary conditions is determined by

minimising the elastic free energy of the sample in the
continuum limit. The corresponding energy density in

the nematic phase is expressed in terms of powers of

the gradient of the director n, restricting to only the

quadratic terms, as

C ¼ 1

2
fK1 �:nð Þ2þK2 n: �� nð Þ½ �2þK3 n� �� nð Þ½ �2g:

ð1Þ

Only very simple systems permit an analytical solu-

tion of the above equation and, very often in practice,

free energy is calculated through numerical proce-

dures. An alternative method is to assume a lattice

model of pairwise interacting nearest-neighbour ele-
ments stipulated by a model Hamiltonian, and to

construct an equilibrium ensemble at different

reduced temperatures (measured in units of the inter-

action strength introduced in the Hamiltonian),

employing the usual Markov chain MC methods

(30) based on the Metropolis algorithm. Earlier

work on these droplets based on this methodology

using the LL model was limited by the fact that the
interaction energy depends only on the relative orien-

tation of the two particles but not their relative posi-

tions, and hence cannot distinguish between the

different deformations. This potential thus corre-

sponds to an assumption of equal elastic constants

(the spherical approximation).

An alternative approach, initiated by Gruhn and

Hess (31), and later developed by Romano and
Luckhurst (32), involves derivation of a model poten-

tial for a pairwise additive interaction between local

directors, which approximately reproduces the elastic

free energy density of the system. This is achieved by

mapping the above equation onto a suitable expansion

of the interaction potential. In this scheme, the space is

discretised to a cubic lattice, each site representing a

director. The free energy of the system is defined as the
sum of pairwise additive interactions between nearest-

neighbouring sites. An expression, with appropriate

multiplicative and additive constants chosen to scale

the isotropic average of the energy to be zero, is then

derived to be used as the model potential for MC

simulations. These naturally are defined through spe-

cific combinations of the three elastic coefficients,

thereby making the model rich and useful so as to be
applicable to real systems with differing elastic con-

stants. Derivation of the potential used in this work is

briefly outlined below, in order to introduce the

notation.
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The pair potential between two directors located at

two neighbouring sites, say j and k, is expanded in

terms of a complete set of basis functions depending

on the orientation of the two directors nj and nk and

the orientation of the vector joining them r. The

S-functions (29) SLj;Lk ;Jðnj; nk; rÞ were found to be sui-

table for this purpose. Here the index Lj refers to the

jth director, Lk to the kth director and J corresponds
to the inter-director vector, taking values from (Lj þ
Lk) to |Lj – Lk|. In this particular application it was

found that the S-functions depend only on the scalar

invariants associated with the vectors in their

argument, viz. aj ¼ nj.r, ak ¼ nk.r, bjk ¼ nj.nk and cjk ¼
nj.(nk � r). The symmetry of the nematic phase which

requires that n¼ -n demands that the total rank, (Ljþ
Lk þJ), of the S-function be even, thereby eliminating
the factors cjk. Thus, the pair potential between two

neighbouring sites j and k is expanded in terms of

S-functions restricted to terms of even total rank,

with suitable coefficients, as (29, 33)

Fjk ¼
X

Lj ;Lk ;J

jLj ;Lk ;J
SLj ;Lk ;J aj; ak; bjk

� �
: ð2Þ

This pair potential is then mapped onto the expression

for the free energy density, assuming small angular

displacements of the director so as to replace the gra-

dients by finite increments. Finally, certain well-

defined deformations are considered in both the pair

potential and the initial free energy density (approxi-

mated for small deviations), so as to derive the relation
between the coefficients of expansion in the pair

potential and the elastic constants. The final expres-

sion for the pair potential FLj;Lk ;J is given by

Fjk ¼ l P2 aj

� �
þ P2 akð Þ

� �
þ m ajakbjk � 1

9

� �

þ �P2 bjk

� �
þ r P2 aj

� �
þ P2 akð Þ

� �
P2 bjk

� �
:
ð3Þ

Here, P2 is the second-rank Legendre polynomial. The

coefficients of expansion are related to the elastic con-

stants through the following relations, involving the
chosen linear dimension � of the volume element in

the cubic lattice to represent their local directors:

l ¼ 1
3
� 2K1 � 3K2 þ K3ð Þ;

m ¼ 3� K2 � K1ð Þ;
� ¼ 1

3
� K1 � 3K2 þ K3ð Þ;

r ¼ 1
3
� K1 � K3ð Þ:

ð4Þ

An interesting feature of this potential is that � enters

as a length scale over which the director gradient is
discretised and defines the lattice parameter corre-

sponding to the distance between the neighbouring

sites. By setting all the elastic constants equal to each

other, say K, the above potential is reduced to the form

of the LL potential,

FLL
jk ¼ ��P2 cos nj:nk

� �� �
: ð5Þ

Under these special conditions, the energy scale

parameter � is equal to �K for the present model. In

general, the total free energy of the system is then

given by

C ¼ 1

2

XN

j¼1

X6

k¼1

Fjk; ð6Þ

where N is the number of sites. Following the proce-
dure adopted earlier, the scaled potential for use in

simulations is obtained by dividing Equation (3) by |v|.

This leads to a scaled temperature, to be used in the

MC scheme, given by

T� ¼ kBT=j�j ¼ 3kBT=ð�jK1 � 3K2 � K3jÞ: ð7Þ

3. Details of simulations

Within the framework of the above lattice

Hamiltonian model (Equation (3)), the surface
anchoring effects due to confinement on the liquid

crystal medium are accounted for by including an

appropriate additional layer of surrounding lattice

sites, hosting mesogenic units with fixed orientations

that are compatible with the stipulated boundary con-

ditions. These are sometimes referred to in the litera-

ture as ghost sites (22, 26), and they do not participate

in the MC simulation. Earlier application of this
Hamiltonian to study field-induced transitions in the

Schadt–Helfrich cell (29) introduces the surface

anchoring effects through this construct. We adopt

the same procedure here to simulate the anchoring

effects at the surface of the liquid crystal droplets. To

this end, a sufficiently large cubic lattice is considered

and a sphere of chosen radius (in lattice units) is carved

out (21). Consequently, the bounding surface will be a
jagged sphere due to the discrete nature of the arrange-

ment of lattice points. Each lattice point is associated

with a local director, say, spin averaged over molecules

enclosed in the cubic volume element of dimension �.

Each spin is associated with a unit vector oriented

along that local director. The lattice sites inside the

sphere represent local directors within the liquid crys-

tal which participate in the MC chain dynamics, while
those outside the sphere with fixed desired orienta-

tions correspond to a substrate imposing the required

boundary conditions (in the present case, oriented

towards the centre so as to impose radial boundary

Liquid Crystals 1381
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condition surface anchoring). These fixed molecules,

representing the substrate, hence do not participate in

the simulation moves.

The flexibility of this Hamiltonian is utilised to

study the effect of elastic properties on the director

distribution by taking the example of a liquid crystal

with known elastic constants in the nematic medium for
purposes of simulation in this work. Thus, we set the

values of K1, K2 and K3 from the measurements on

p-azoxyanisole (PAA) taken at a reduced temperature

T=TNI equal to 0.963 as 7.0� 10-12 N, 4.3� 10-12 N and

17.0�10-12 N, respectively (33). The energy scale is set,

for a given set of elastic constants, by the dimension of

the volume element over which the local director is

defined, and hence the effective temperature at which
the canonical ensemble is constructed is determined by

this choice of Equation (7). From the previous studies

on planar hybrid film (29) it was concluded that the

continuum results could be recovered for a choice of

this dimension typically in the range of a few hundred

angstroms and above, corresponding to a typical

reduced temperature T* of 0.10 and below.

Assignment of lower values of �, leading to higher
values of T*, would correspond to, in physical terms,

appreciable fluctuations in the director field. It was

found that, for such effective high temperatures, the

predicted results were not consistent with the expected

behaviour from continuum theory based on minimisa-

tion procedures. A typical value for � above which the

fluctuations are small enough to yield satisfactory simu-

lated results consistent with experimental results was
reported to be around 700 Å.

Due to the symmetry of the problem (a nematic

droplet subjected to radial boundary conditions) only

splay distortion is operative, and this convenient situa-

tion is exploited by extending these studies as a func-

tion of the relative splay energy contribution, effective

by varying the value of K1 relative to the other elastic

constants. To this end, the simulations are performed
for different K1 values at fixed K2 and K3, and the

results are then discussed for convenience in terms of

the ratio (called the scale factor, say a) of the assigned

K1 value to its actual value.

These studies are also aimed at examining the

influence of the surface anchoring on changes in the

director structure, and accordingly we introduce a

variable anchoring strength eS (in units of the energy
scale set above), ranging from 0 to 1. This defines the

strength of interaction between the liquid crystal mole-

cules and the (orientationally) fixed molecules in the

substrate. Introduction of this variable facilitates a

study of possible anchoring-induced structural transi-

tions in the system.

Different physical properties are computed based

on these simulations, and in order to get an insight into

the director structure inside the droplet, we consider

the droplet to comprise of concentric shells of a given

width, indexing them in ascending order as we move

away from the centre of the droplet. We report ensem-

ble averages of different properties measured within

each of the layers. The variables so computed include:

uniaxial orientational order SA (referred to the axial
order in the system), the radial order SR (measuring

the degree of alignment of liquid crystal molecules

along the radial direction in the droplet, computed

from hP2ðcosð�iÞÞi where �i is the angle made by each

of the liquid crystal molecules in the droplet with

respect to the local radial direction and the angular

brackets represent the ensemble average over the sam-

ple as well over the MC runs), root mean square
(RMS) fluctuations in these orders within each con-

centric layer, and the rigid lattice limit NMR spectrum

of deuterium (located on the core of the molecule)

expected from the system assuming that the Zeeman

field is always applied parallel to the instantaneous

director. We take known typical values for the deuter-

ium quadrupole coupling constants (175 kHz) and the

C–D bond angle with respect to the long axis of the
molecule (60�).

Canonical ensembles at the fixed reduced tempera-

ture of 0.01 (corresponding to K1, K2 and K3 values of

7.0�10-12 N, 4.3�10-12 N and 17.0�10-12 N, respec-

tively, and � ¼ 710 Å) were constructed for a droplet

with a radius of 15 lattice units using the Markov chain

MC-simulation-based Metropolis algorithm. The

data for computation of the variables of the above
physical properties were collected over 5 million MC

steps after ignoring the first 1 million steps for equili-

bration. The results are discussed below.

4. Results and discussion

With the scale factor fixed at unity (i.e. using the

typical values of the elastic coefficients of PAA as

such), we see an anchoring mediated structural transi-

tion of the director configuration as depicted in Figure 1.

Both SA and SR show a sudden jump at eS , 0.54.

When eS is close to zero, the surface does not have a
significant influence on the director structure and the

droplet has a predominantly uniaxial director config-

uration represented by a high value of SA, and the

corresponding SR is low. As the value of eS is

increased the uniaxial order decreases and at the

threshold value of about 0.54 the axial order practi-

cally vanishes, while the radial order assumes a value

very near unity. This would physically correspond to
an anchoring-mediated sudden change in the director

structure finally culminating in an essentially radially

ordered director configuration. These results are con-

sistent with those of the earlier work carried out with

1382 G. Sai Preeti et al.
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the LL model with eS ¼ 1. It is interesting to see the

corresponding changes in the layer-wise order para-
meters as a function of eS. These are depicted in

Figures 2(a) and 2(b). Both of the figures, which are

complementary, indicate that below the threshold eS

the development of radial order, at the expense of the

axial counterpart, is gradual as one moves out from

the centre of the droplet, and the droplet is thus

becoming gradually transformed from a pure uniaxial

symmetry to a more spherical symmetry. Just at the
threshold value, a sudden transition of the director

structure takes place, making it essentially spherically

symmetric, but for a small inner core (of a radius of

about 3 to 4 lattice units) which still manages to have

uniaxial order. This, is due to the significant elastic

energy involved in forcing the radial orientations of

the director to the very centre of the droplet (19, 34).

Thus, the minimum free energy is obtained by allow-

ing a small core of the uniaxial region with some
energy cost at the interface between two differently

ordered regions of the medium.

Figure 3 shows the RMS value of layer-wise (uni-

axial) order fluctuations as eS is varied from 0.1 to 1.0.

These fluctuations seem to provide an insight into the

progression of the radial order towards the centre, and

are significant near the interfacial region at the delimit-

ing surface due to frustration effects. When eS is low
(0.1) the effect of radial anchoring seems to make the

axial order fluctuate progressively more, as the confin-

ing surface is reached from the centre. At eS¼ 0.2, there

are very significant fluctuations which persist typically

in the outer five layers, implying that at this anchoring

value the energy cost of percolating the radial order is

competing with the interfacial energy (at the surface)

involved to retain a large enough uniaxial region. It
may be noted that this energy cost is relatively small

at this large radius of the uniaxial droplet. However,

further increase of eS to 0.3, and up to a threshold value

of about 0.54, indicates rather curiously that the fluc-

tuations are uniform over the layers, but for a small

(approximately two-fold) increase in the middle layers

of the droplet. This suggests that the uniaxial order

fluctuations are smaller at the core (away from the

Anchoring strength

Scale factor = 1.0
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Figure 1. Variation of radial and axial order with anchoring
strength for a scale factor 1.00.
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Figure 2. (a) Variation of radial order with layers for the scale factor 1.00 for different anchoring strengths (the different plots
correspond to different anchoring strengths eS, as indexed). (b) Variation of axial order with layers for the scale factor 1.00 for
different anchoring strengths (the different plots correspond to different anchoring strengths eS, as indexed).
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competing boundary conditions) and at the surface

(due to the pinning effect from the surface), and are

somewhat more pronounced in the mid-layers, as can
be expected under the circumstances. At the onset of the

anchoring-induced transition, beyond the threshold

value of eS, however, the scenario changes qualitatively.

The order fluctuations suddenly shift towards an inner

layer (around 4 to 5 units) and show systematic peaks

(unlike the fluctuations near the outer layers at eS¼ 0.2)

at the interfacial surfaces, their position shifting pro-

gressively to inner layers as the anchoring strength is
increased to unity beyond the threshold value. These

fluctuations unambiguously show the onset of radial

order and its progression with anchoring strength, and

provide the signature of the anchoring-induced struc-

tural transition in the medium. In order to correlate the

above changes with experimentally observable quanti-

ties, 2H NMR spectra expected from the different direc-

tor configurations were generated for different eS

values. Figure 4 shows two limiting spectra for eS ¼
0.1 and 1.0.

The simulations were extended to find the effect of

varying the energy costs of the relevant elastic distor-

tion (i.e. the splay constant K1 relative to its actual

value, while retaining the other two elastic constants

the same) through the scale factor a, as mentioned

before. Figure 5(a) shows the variation of the two
orders with eS as a is varied from 0.1 to 3.0 in some

convenient steps. It may be noted that, after the onset

of the anchoring-induced transition, the region of

interface between the uniaxial core and the outer

radial region depends on the balancing of the elastic

energy costs involved, and in this case is determined by

the splay elastic coefficient; other competing

conditions are kept constant. Thus, Figure 5(a)

shows that the effect of varying the relative value of

the splay elastic constant is two-fold: the threshold
value for the anchoring transition increases with

increase of a, and the extent of change in one type of

order to the other type after the anchoring transition

decreases with a. This is consistent with the picture

that, as K1 is systematically increased, it requires more

anchoring influence from the boundary to induce this

transition, and a higher K1 value also demands a larger

uniaxial core for energy balance at the interface, thus
reducing the disparity between the magnitudes of the

two different types of orientational order. For com-

parison with the case of a ¼ 1 (Figures 2(a) and 3(a)),

Figures 6(a) and 6(b) show layer-wise variation of the

two orders with eS at a¼ 0.1. It is seen that the thresh-

old value for the anchoring transition is now around

0.52 and the radius of the inner uniaxial core has

diminished.
To examine the growth of the core region with

uniaxial order as a function of changes in the splay

constant, we show layer-wise variation of SA as a is

varied (Figure 5(b)). From this one can infer the typi-

cal size of the core sustaining uniaxial order and its

dependence on splay elasticity. These results are

plotted in Figure 5(c), showing a linear variation of

the radius of the spherical inner uniaxial core with
scale factor a. From these results, one can also plot

the variation of the threshold values of eS needed to

induce the anchoring transition, as a function of dif-

ferent scale factor values (a), and this is shown in

Figure 5(d). It is also illustrative to compute the 2H

NMR spectra for the different values of a, at the fixed

eS ¼ 1, to see how the corresponding layer-wise
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ns

Figure 3. Variation of RMS value of order fluctuations with
layer number for different anchoring strengths (the different
plots correspond to different anchoring strengths eS, as
indexed).
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Figure 4. Simulated NMR spectrum for different resonant
frequencies for the scale factor 1.00 (inner plot representing
axial order).
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Figure 5. (a) Variation of the order parameters with anchoring strength for different scale factors, as indexed. (b) Variation of
axial order for different K1 with the layer number. (c) Radius of the inner axial order core with the scale factor. (d) Variation of
threshold anchoring strength with scale factor.

Liquid Crystals 1385

D
o
w
n
l
o
a
d
e
d
 
A
t
:
 
1
4
:
1
3
 
2
5
 
J
a
n
u
a
r
y
 
2
0
1
1



variation of the director field (Figure 5(b)) would react

in an experimental situation, and this is shown in

Figure 7. To look for possible hysteresis of this

anchoring transition, given the abrupt changes
induced by the anchoring strength, the simulations

were repeated at a ¼ 1, by decreasing eS to zero start-

ing from unity. The results are shown in Figure 8 and it

is observed that there is a strong hysteresis associated

with this anchoring transition. The transition to the
original uniaxial state (at the lower anchoring values)

could not be located precisely, and one can only infer

that it should be somewhere between 0.1 and 0.0.

Finally, the applicability of this model depends on

the dimension of the volume element � chosen to

represent the average director field, and it was held

fixed at 700 Å. To test limitations of this dimension on

the results, simulations were also carried out (setting
a ¼ 1) at two other values of � (70 Å and 7Å), and

Figure 9 summarises the findings. At 70 Å (corre-

sponding to the reduced temperature of 0.1), it could

Figure 6. (a) Radial order for every layer for the scale factor 0.1 for different anchoring strengths. (b) Axial order for different
anchoring strength for every layer at the scale factor 0.1 (the different plots correspond to different anchoring strengths eS, as
indexed).

Resonance frequency (arb. units)

Figure 7. Simulated NMR spectra for various values of the
scale factors.

Anchoring strength

Figure 8. The hysteresis curve for cell dimensions (�) of 700 Å.
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be expected from the earlier work on planar hybrid

films (29) that the volume element is too small to

provide statically reliable representative director

orientations (in statistical terms, the ensemble is col-

lected at an unacceptably higher temperature), and

any departures, if observed, were explained as being

due to the effect of large director fluctuations. The

present results thus show that at lower values of �
the effect of director fluctuations is considerable, and

the transition displays a shift in the threshold anchor-

ing strength and also apparent weakening of the tran-

sition (Figure 9). The data at an even lower value

shown in Figure 9 proves this point convincingly.

5. Conclusions

The liquid crystal micro-droplet is revisited with a

different Hamiltonian model which permits explicit

incorporation of the elastic properties of the medium,

under certain conditions. We report here a structural

transition in the director field, induced by tuning the

anchoring strength at the spherical boundary. The
layer-wise profiles of the two orders which distin-

guish the two phases, as well as their layer-wise fluc-

tuations, provide an insight into the progression of

this transition. The flexibility of this model is used to

simulate the effect of assigning different splay prop-

erties of the medium (via the scale parameter), and

the anchoring transition is studied as a function of the

scale parameter, keeping other conditions the same.
This affects both the anchoring threshold for the

transition, as well as the extent to which the radial

order could penetrate into the droplet. These effects

can be conveniently gleaned by looking at 2H NMR

spectra (under rigid lattice conditions) which repre-

sent the variations of the director fields more trans-

parently. The anchoring transition seems to be of

strong first order leading to complete wetting, and it

is reflected by the large hysteresis associated with this

transition. This model is of course limited by the

choice of the length scale connecting the volume ele-
ment over which the local director is defined, and is

effectively reflected in the MC simulation via the

reduced temperature that is assigned during the simu-

lation. These limits are also examined to see the effect

of director fluctuations on the anchoring transition

reported.
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